

Updated on: 9th March 2022

CERTIFICATE OF ANALYSIS

Lot#: CyHum(f)19009-HE-C

PRODUCT DESCRIPTION

Reference: HuHECPMI/6+ Product: Cryopreserved Human Hepatocytes Category: Plateable, Cytochrome P450 inducible Spheroid qualified: Yes (see details below: 3D Spheroid formation section) Isolation date: 21st November 2019 Initial Isolation Viability: 88.00% Storage conditions: -196°C using LN2 Sterility test: negative for bacteria, yeast, and fungi

DONOR DEMOGRAPHICS

Species	Gender	Race	Age	BMI	Smoker	Alcohol Use	Drug Use
Human	Female	Caucasia	n 70	18	No	No	No
Pa	athology				Serological	Data ¹	
Μ	1 Hepatic			Tested nega	ative less than 3 m	onths before surge	ry
					Epstein Bar p	ositive	

Patient informed consent was obtained. The donor was serologically tested negative for following infectious diseases: HIV, Hepatitis B and C. Donor medical history was also examined prior to accepting this donor. **For donor's medication information, please contact us.*

CHARACTERIZATION FOR PLATEABLE CELLS

Post Thaw Lot information	Result	SD	n
Number of viable cells (cells/vial):	7.02x10 ⁶	± 2.74x10 ⁶	6
Post-thaw viability (%):	91.55	± 2.75	6
Days in culture after thaw (24w):	24	± 0.00	2
Days in culture after thaw (96w):	5	± 0.00	2
MONOLAYER ASSESSMENT ² Plateable:	YES Conflu	ience: 95%	
Seeding density in 24 well recommended:	2.12x	10 ⁵ cells/cm ²	
Seeding density in 96 well recommended:	2.20x	10 ⁵ cells/cm ²	
Cell morphology 24h		Cell morphology	96h

Human hepatocytes were thawed and seeded according to Cytes Biotechnologies protocol. The post-thawing yield and viability (trypan blue exclusion assay) of hepatocytes were assessed after a purification process.

²Resuspended human hepatocytes from the post-thaw assessment were plated in collagen-coated 24-well plates in hepatocyte plating medium. Cells were overlaid with Matrigel[®] (Corning) in hepatocyte maintenance medium at first medium change at day of thawing. Maintenance medium was replaced in the cultures daily. If images from 96w plates are needed, please contact us.

For basic research use only, not to be used for clinical or diagnostic applications. Products distributed by Cytes Biotechnologies may contain human material that should be treated as potentially biohazardous.

CYTES BIOTECHNOLOGIES, SL.

Parc Científic de Barcelona, C/Baldiri Reixac 4-8 | www.cytesbiotechnologies.com | info@cytesbiotech.com | P.+34 934034553

3D SPHEROID FORMATION

Spheroid morphology

Primary human hepatocytes self-assembled into a spheroid containing 5000 cells after 5 days in culture. These hepatic spheroids were cultured for 7-15 days in ultra-low attachment (ULA) plates with our 3D Culture Maintenance Media for hepatocytes (MHM3D). **For more information/protocols about 3D hepatocyte spheroids, contact us.*

INDUCTION FOR PLATEABLE CELLS

PHASE I: CYP ACTIVITIES EXPRESSED IN pmol/min/mg protein (mean ± SD)

		Induction (Specific Activity)		
Enzyme	Basal Activity on day 1	Basal Activity on day 4	Induced Activity on day 4	n-Fold induction
CYP1A2	19.65 ± 1.79	15.89 ± 0.69	207.41 ± 15.22	13.06
CYP2B6	20.36 ± 0.62	22.42 ± 6.04	64.17± 10.65	2.86
CYP3A4	31.50 ± 1.51	50.02 ± 3.07	157.21 ± 12.21	3.14

Cryopreserved human hepatocytes were thawed and plated in 24well collagen I coated plates. Cells were overlaid with Matrigel[®] (Corning) in Human Hepatocyte Maintenance Medium at first medium change at day of thawing. Treatment (n=2 per compound) with vehicle control [0.15% (v/v) DMSO] or inducers (Rifampicin, β -Naphthoflavone and Phenobarbital) began 1-day post-plating and continued for 72 hours. At the end of induction, monolayers were rinsed with PBS and incubated with probe substrate solutions in culture media. See Table 1 for information on each probe substrate. Metabolites were quantified by LC-MS and normalized to protein content. The fold induction was calculated by dividing the induced activity by the vehicle basal activity on the same day in culture.

PHASE I: CYP450 mRNA induction

CYP (mRNA)	n-Fold Induction
CYP1A2	15
CYP2B6	12
CYP3A4	8

Cryopreserved human hepatocytes were thawed, plated in 24well collagen I coated plates in Hepatocyte Plating Medium. Cells were overlaid with Matrigel[®] (Corning) in Human Hepatocyte Maintenance Medium at first medium change at day of thawing. Maintenance medium was replaced in the cultures daily. Treatment (n=2 per compound) with vehicle control [0.15% (v/v) DMSO] or inducers (Rifampicin, β -Naphthoflavone and Phenobarbital) began 1-day postplating and continued for 72 hours. At the end of the treatment period, RNA was isolated for mRNA analysis.

Table 1. Substrates Phase I

Probe Substrate	Concentration (µM)	Incubation Time (min)	Metabolite
Phenacetin	100	30	Acetaminophen
Bupropion	500	30	Hydroxybupropion
Midazolam	30	30	1-Hydroxymidazolam
	Phenacetin Bupropion	Phenacetin100Bupropion500	Phenacetin 100 30 Bupropion 500 30

PHASE II: UGTs & SULT ACTIVITIES 24h AFTER SEEDING EXPRESSED IN pmol/min/mg PROTEIN (mean ± SD)

Enzyme	Conjugate	pmol/min/mg
UGT	7-OH coumarin glucuronide	244.91 ± 21.79
SULT	7-OH coumarin sulfate	43.96 ± 1.05

Cryopreserved human hepatocytes were thawed, plated in 24well collagen I coated plates in Hepatocyte Plating Medium. Cells were overlaid with Matrigel® (Corning) in Human Hepatocyte Maintenance Medium at first medium change at day of thawing. On day 1, hepatocytes were incubated with 7-Hydroxycoumarin to assay for UDP-Glucuronosyltransferase (UGT) and Sulfotransferase (SULT) activities. See Table 2 for information on each probe substrate. Metabolites were quantified by LC-MS and normalized to protein content.

Table 2. Substrates Phase II

Enzyme	Probe Substrate	Concentration (µM)	Incubation Time (min)	Metabolite
UGT	7-Hydroxycoumarin	100	30	7-Hydroxycoumarin-glucuronide
SULT	7-Hydroxycoumarin	100	30	7-Hydroxycoumarin-sulfate

If you need help for an experiment, just contact us, our experts will be pleased to assist you.

For basic research use only, not to be used for clinical or diagnostic applications. Products distributed by Cytes Biotechnologies may contain human material that should be treated as potentially biohazardous.

CYTES BIOTECHNOLOGIES, SL.

Parc Científic de Barcelona, C/Baldiri Reixac 4-8 | www.cytesbiotechnologies.com | info@cytesbiotech.com | P.+34 934034553

CERTIFICATION:

The viability and performance of the primary human hepatocytes provided depend primarily on the use of appropriate media and reagents, as well as the use of sterile plastics. Likewise, proper handling protocols must be followed. Please note that if these parameters are not carefully considered, the cellular response obtained in the assays may be lower than expected.

Name	Tittle	Signature	Cytes Biotechnologies, S.L.	Date
Pilar Sainz de la Maza	Quality Manager	Plas fair level	CYTES BOTECHADLOGIES BL	09/03/22

For basic research use only, not to be used for clinical or diagnostic applications. Products distributed by Cytes Biotechnologies may contain human material that should be treated as potentially biohazardous.

CYTES BIOTECHNOLOGIES, SL.

CELL COUNTING

Lot #: _____

Date: ___/___/

MORPHOLOGY

Clear cytoplasmClear membranes

Rounded shapeMembrane blebbing

Cell swelling
Lipid droplets

Hardly any debrisPrevalent debris

TRYPAN BLUE COUNTING RESULTS

Q1 Q2			CHAMBER COUN	
	Quadrant	Live cells +	Dead cells	= Total cel
	Quadrant 1	+		=
	Quadrant 2	+		=
	Quadrant 3	+		=
	Quadrant 4	+		=
Q3 Q4	Total	+		=
IABILITY (Live cells) Total cells) (IELD (otal cells) x (Dilution f (Counted q		Viability (%) rent volume) ml =	cells (Total 1	number of cells)
EEDING DENSITY		pplicable when it is used a Hen	nocytometer	
Desired number of cells) (Total number eep in mind the final volu	cells x (Current volum of cells) c	ne) ml ells =	ml (Volu	ume needed for your cells) Iculate the needed ml (Volume to add)
Desired number of cells) (Total number eep in mind the final volu olume to add: (Total	cells x (Current volum of cells) c ume per dish or plate l volume well)	ne) ml ells = e to use (Volume need ml – (Cells total volume)	ml (Volu led) and then ca ml =	lculate the needed ml (Volume to add)
Desired number of cells) (Total number eep in mind the final volu	cells x (Current volum of cells) c ume per dish or plate l volume well)	ne) ml ells = e to use (Volume need ml – (Cells total volume) re: Brand	ml (Volu led) and then ca ml = 24-well plate	Iculate the needed ml (Volume to add) 96-well plate
esired number of cells) (Total number ep in mind the final volu lume to add: (Total	cells x (Current volum of cells) c ume per dish or plate l volume well)	ne) ml ells = e to use (Volume need ml – (Cells total volume) re: Brand ThermoFisher	ml (Volu led) and then ca ml = 24-well plate 1.90 cm²/well	Iculate the needed ml (Volume to add) 96-well plate 0.32 cm²/well
Desired number of cells) (Total number eep in mind the final volu plume to add: (Total	cells x (Current volum of cells) c ume per dish or plate l volume well)	ne) ml ells = e to use (Volume need ml – (Cells total volume) re: Brand ThermoFisher Corning®	ml (Volu led) and then ca ml = 24-well plate 1.90 cm ² /well 2.00 cm ² /well	Iculate the needed ml (Volume to add) 96-well plate 0.32 cm ² /well 0.36 cm ² /well
Desired number of cells) (Total number eep in mind the final volu plume to add: (Total	cells x (Current volum of cells) c ume per dish or plate l volume well)	ne) ml ells = e to use (Volume need ml – (Cells total volume) re: Brand ThermoFisher	ml (Volu led) and then ca ml = 24-well plate 1.90 cm²/well	Iculate the needed ml (Volume to add) 96-well plate 0.32 cm²/well

For basic research use only, not to be used for clinical or diagnostic applications. Products distributed by Cytes Biotechnologies may contain human material that should be treated as potentially biohazardous.

CYTES BIOTECHNOLOGIES, SL.

Parc Científic de Barcelona, C/Baldiri Reixac 4-8 | www.cytesbiotechnologies.com | info@cytesbiotech.com | P.+34 934034553